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Stability of periodic waves in shallow water 
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Waves of small but finite amplitude in shallow water can occur as periodic wave 
trains of permanent shape in two known forms, either as Stokes waves for the 
shorter wavelengths or as cnoidal waves for the longer wavelengths. Calculations 
are made here of the periodic wave trains of permanent shape which span uni- 
formly the range of increasing wavelength from Stokes waves to cnoidal waves 
and beyond. The present investigation is concerned with the stability of such 
permanent waves to periodic disturbances of greater or equal wavelength traveI- 
ling in the same direction. The waves are found to be stable to infinitesimal and 
to small but finite disturbances of wavelength greater than the fundamental, 
the margin of stability decreasing either as the fundamental wave becomes more 
nonlinear (i.e. cont,ains more harmonics), or as the wavelength of the periodic 
disturbance becomes large compared with the fundamental wavelength. The 
decreasing margin of stability is associated with an increasing loss of spatial 
periodicity of the wave train, to the extent that small but finite disturbances can 
cause a form of interaction between consecutive crests of the disturbed wave train. 
In  such a case, a small but finite disturbance of wavelength n times the funda- 
mental wavelength converts the wave train into n interacting wave trains. The 
amplitude of the disturbance subharmonic is then nearly periodic, the time scale 
being the time taken for repetitions of the pattern of interactions. When the 
disturbance is of the same wavelength as the permanent wave, the wave is found 
to be neutrally stable both to infinitesimal and to small but finite disturbances. 

1. Introduction 
Water waves of small but finite amplitude that propagate with constant shape 

are known as permanent waves. Periodic permanent waves include the Stokes 
wave (Stokes 1847) and the cnoidal wave (Korteweg & de Vries 1895). The Stokes 
wave has been shown by Benjamin (1967) to be linearly stable or unstable to 
periodic disturbances travelling in the same direction as the wave motion 
depending on whether the fundamental wavelength is greater or less respectively 
than 4-61 times the depth. The present investigation is concerned with the 
stability of periodic permanent waves to periodic disturbances travelling in the 
same direction in the range in which the Stokes wave is linearly stable. This is 
the range of periodic permanent waves whose wavelength is large compared with 
the depth. 

The three length scales describing periodic permanent waves propagating 
6 F L M  66 
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in one direction along a uniform horizontal channel are the height 2a of the 
wave crest above the wave trough, the wavelength 2nl and the mean depth h. 
Two non-dimensional ratios may be formed from these lengths, namely e = a/h 
and p = h/l .  The approximation made in deriving the Stokes wave is that 
ep < 1 and that e < p2 when p < 1. On the other hand, the approximation made 
in deriving cnoidal waves is that E < 1, with E N p2. The incompatibility of the 
approximations prevents a uniform transition from Stokes waves to cnoidal 
waves for given e < 1 asp  decreases from 1 towards 0. The permanent waves which 
span uniformly this range are calculated below from the governing equations. 

Since the displacement of the water surface is spatially periodic, it may be ex- 
panded in a Fourier series with time-dependent Fourier coefficients. The approxi- 
mation to be made in $ 2  in deriving equations for the Fourier coefficients is 
that e < I with p < 1. The permanent-wave solutions of these equations are 
found in § 3, where it is shown that these solutions span uniformly the range from 
Stokes waves through and beyond cnoidal waves for e < I as ,u decreases from 
1 towards 0. The stability of the permanent waves to periodic disturbances of 
wavelength greater than or equal to the fundamental wavelength is investigated 
in $9 4-6. 

The solutions are terminated a t  a time t N c2 a t  which the cumulative effect 
of the approximations may become significant. The solutions are valid, to the 
same approximation, for the spatial stability of a temporally periodic permanent 
wave generated by a wave maker oscillating at one end of an open uniform 
channel up to a distance x N c2 from the wave maker (Bona & Bryant 1973). 
I n  the latter context, the present investigation applies to the spatial stability 
of permanent waves to periodic disturbances of the wave maker of period 
greater than or equal to the fundamental period of the permanent wave. 

The disturbance found by Benjamin (1967) to cause linear instability of Stokes 
waves consisted of a slow modulation of the fundamental wave train by a pair of 
wave modes with side-band frequencies and wavenumbers slightly different from 
the fundamental frequency and wavenumber. This property was also demon- 
strated by Whitham (1967) using a different method of analysis, and has been 
extended to two horizontal dimensions by Benney & Roskes (1969) and Hayes 
(1 973). The instability results from resonant nonlinear interactions between the 
disturbing wave modes and the first two harmonics of the Stokes wave. A neces- 
sary condition for instability when the wave and the disturbance are travelling in 
the same direction is that p > 1.363. 

The nonlinear interactions between the harmonics of waves in shallow water 
are nearly resonant (Bryant 1973,s 2 ) ,  the interactions becoming closer to reson- 
ance as p decreases towards zero. Equivalently, the interactions between lower 
harmonics are closer to resonance than those between higher harmonics. Ben- 
jamin’s analysis fails as p + 0,  the coefficients of equation ( 2 4 )  of Benjamin 
(1967)) for example, being O ( P - ~ )  as p( = K )  + 0, while they are required in his 
analysis to be O(1). These coefficients become large compared with 1 as p -+ 0 
because the nonlinear interactions that generate them become closer to reson- 
ance asp  + 0. It is necessary to include more harmonics as p + 0 in order to obtain 
the same accuracy in the analysis. 
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The response to periodic disturbances of permanent waves for which ,u < 1 
may be anticipated from the principle of near-resonance. It is expected that the 
amplification of the disturbance increases either as ,u decreases or as the wave- 
length of the disturbance increases because either effeot causes the nonlinear 
interactions to become closer to resonance. Resonance itself cannot occur a t  the 
lowest order in e for p < 1.363, so instability in the strict sense does not occur. 
However, a s p  --f 0, or as the disturbance wavelength increases, it is expected that 
the amplification of the initial disturbance will become sufficiently large that 
permanent waves are modified substantially by small but finite periodic initial 
disturbances. 

2. Equations of motion 
Consider an irrotational flow bounded above by the free surface y = q ( x ,  t )  

and below by the horizontal plane y = - 1. The velocity potential $(x, y, t )  
satisfies 

q5zx +ru-2q52/y = 0, (2 . la)  

q5a,=0 on y =  -1, ( 2 . l b )  

Tt-,u-2q5y = & M J x + 0 ( e 2 )  on y = 0, (2 . lc )  

( 2 . l d )  7 + #t = e( - &q5: - i,r2#i + q5tq5,t) + O(e2) on y = 0. 

The space co-ordinates x and y are measured in units of Z and F, respectively, and 
time t is measured in units of Z/co, where co = (gh)* is the linear long-wave velocity. 

The periodic surface displacement and the velocity potential are expanded in 
the Fourier series 

1 "  
~ ( x ,  t )  = C B k ( t )  exp i ( k x  - wt) +complex conjugate, ( 2 . 2 )  

k=l  

1 "  
$(x, y, t )  = - Yt  + - c, ck( t )  exp i ( k x  - wt) cash [Pk( 1 + ~ ) ] / c o s ~ , u ~  

k=l  
+complex conjugate, (2.3) 

where w ( k )  = (k/p tanhpk)* is the angular frequency of infinitesimal waves of 
wavenumber k. It is noted from the linear theory that dBk/d t ,  dC&t and y are 
O(s).  A more convenient Fourier series for ~ ( x ,  t )  is 

l a 3  

~ ( x ,  t )  = c ~ ( k ,  t )  exp ik(x -ct)  +complex conjugate, (2.4) 
k = l  

where c is identified later with the phase velocity of permanent waves (in units of 

When the Fourier series (2.2) and (2.3) are substituted into (2.1) and the 
amplitudes Ck(t) eliminated, the equations for B k ( t )  stated by Bryant (1973) are 
obtained. The equations for the new Fourier amplitudes A(k,  t )  are then 

G O ) .  

k - 1  

1=1 
D A ( k ) - i k ( c - w ) A ( k )  = - i s  gs(k,z)A(z)A(k-z)  

-is C R(k,Z)A*(Z)A(k+Z)+O(e2), k = 1,2,  ..., (2.5) 
1-1 

6-2 
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where D = d/dt, 

{w(k+ I )  - o ( l ) ) { h ( k  + 1 )  + (k + 1) ~ ( l ) }  k + w(k)'Z(k + E )  
2 0 ~ ( Z ) w ( k + + ) ( ~ ( l c )  +w(k+Z)-w(Z)} 

R(k , l )  = 

o(k)2{o(Z)2-o(Z)o(k+I)  +w(k+E)2)  
3 (2.6) 

S(k,i!) = R ( k ,  - I )  with o( - k )  = - w ( k ) .  (2.7) 

2{o (k )  + w(k + I )  - w(E)) - P2 

There is no explicit restriction on p in the derivation of (2.5). Note that the de- 
finitions of R(k,Z) and S(k,Z) have been written in such a form that these 
coefficients are defined for all real positive k and I ,  since this extension of the 
definitions from integral k and E is required when subharmonic disturbances of 
wavenumber less than 1 are introduced. 

3. Permanent waves 
The steady form of (2.5) with all harmonics in phase is 

( k c - w ) a k  = c C +X(k,I)aza,- ,+s C R(k,Z)aza,+l+O(e2),  k = 1,2, ..., (3.1) 

where c and ak ( k  = 1,2, . . .) are positive real variables. The permanent waves are 
the solutions of (3.1) subject to the constraint that the height of the crest above 
the trough is 2a, namely 

k - 1  m 

1=1 2=1 

m 

It is assumed, for the purpose of ordering the terms in (3.1), that for any given 
permanent wave the amplitudes approximate to a geometric sequence : 

a k  Tk-'. (3.3) 

Equations (3.1) are then solved by successive approximation, when it is found 
that the solutions are consistent with this ordering. The ratio r is dependent on 
eIp2, with r increasing towards 1 as slp2 increases. 

Stokes waves are the permanent waves for which r N e, when the only non- 
trivial equations obtained from (3.2) and (3.1) are 

(3.4) I a, = 1 + O ( E 2 ) ,  

( 2 c - o ( 2 ) ) a 2  = +S(2, l)a;+O(€2).  

a, = 1 + 0 ( € 2 ) ,  

u2 = &€S(2,1)/(2W( 1) - o ( 2 ) )  + O ( E 2 )  

c = w( 1) + O ( E 2 ) .  

( c - o ( l ) ) a ,  = O(E2), 

Their solution is 

(3.5) 1 = ep(3 - tanh2p)/4 tanh3p + O ( E ~ ) ,  

This solution is the second approximation of Stokes (1847). The initial assumption 
that r N e is seen from the solution to be equivalent to p N 1. 
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The third approximation of Stokes (1880) is found by keeping r - e and by 
evaluating the terms O(e2),  leaving a remainder O(e3).  Laitone (1962) made this 
analysis in order to compare the higher approximations for Stokes waves with 
higher approximations for cnoidal waves. The aim of the present analysis is to 
calculate the periodic permanent waves which span uniformly the range from 
Stokes waves to cnoidal waves for fixed E < 1 as p decreases from 1 towards 0. 
For this reason, smaller values of r are now taken and further harmonics are 
included in the equations in order to obtain solutions valid for smaller values of p. 

The next set of equations, for which r2 N e, is 

i 
a, + a3 = 1 + O(e2),  

(c - w(  1 ) )  a, = eR( 1,  1) a,a, + 0 ( s 2 ) ,  
(2c-w(2))a2 = +eS(2, l )a:+0(e2) ,  
(3c-w(3))a3 = eS(3, l)a,a,+O(e2). 

Their solution is 

c = w(1)+&2R(l ,  l)S(2,1)/(2w(1)-w(2))+0(e2),  (3.7a) 

a1 = 1 - k 2 f l ( 2 ,  1 ) 5 ( 3 , 1 ) / { ( 2 ~ ( 1 ) - ~ ( 2 ) )  (3w(l)-w(3)))+O(e2) ,  (3.76) 

a2 = &5'(2, 1 ) / ( 2 w (  I ) )  - 4 2 )  + O(e%), (3.7c) 

a3 = 1 -a l+0(e2 ) .  ( 3 . 7 4  

It may be shown from the dispersion relation that 

so the initial assumption that r2 - e is seen from the solution to be equivalent 

The set of equations containing the first harmonics is such that rn-l N E .  The 
set consists of n + I equations for the n + 1 variables a,, . . . , a, and c. Although 
analytical methods of solutions are possible for the smaller sets of equations, 
numerical methods must be used for the larger sets of equations. The generalized 
Newton method for systems of equations was tried and found successful, 
satisfactory convergence to the solution being achieved for up to 50 harmonics. 

Some properties of the permanent-wave solutions for given E = 0.05 as e/p2 
increases from 0.1 to 10.0 are sketched in figures 1-3. The value of e was taken 
to be fixed at 0.05 and the independent variable was chosen to be e/pz in all 
calculations in the present investigation. The reason for this choice is that, in the 
Korteweg-de Vries model, long-wave systems are dependent only on the ratio 
e/,u2, and not on e and p independently. Although the present model is not as 
restrictive as the KdV model, it is closely approximated by it over much of the 
range of e/p2, as is seen in figure 2. 

Figure 1 shows the ratio a,/al of the first two harmonics. One of the main 
assumptions of Stokes's model is that the ratio a,/al should be small compared 
with 1. This assumption is seen to be true only for the smallest values of e/pz in the 
present range of values. The increase in the value of a2/al as e/p2 increases is a 
result of the interactions between the harmonics becoming closer to resonance 
as p2 decreases towards 0 a t  fixed small e. 

to p4 E .  
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FIGURE I.  The ratio of the first two harmonics of periodic permanent wavos 

on shallow water ( E  = 0.05). 

&It+ 
FIGURE 2. The phase velocity of periodic permanent waves compared with the phase 

velocity of the cnoidal waves of Korteweg & de Vries ( E  = 0.05). 

Figure 2 compares the phase velocity c of permanent waves with the phase 
velocity of the cnoidal waves of Korteweg & de Vries (Lamb 1945, $253). The 
latter is dependent only on the ratio &/p2. The figure shows that divergence occurs 
a t  the two ends of the present range of values of e/p2. The divergence for the small 
values of € 1 , ~ ~  occurs because the basic assumption of the KdV model that p2 4 I 
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FIGURE 3. Profiles of one wavelength of a periodic permanent wave for each 
of three values of e/p2 ( E  = 0.05). 

is not valid there. The divergence for the large values of e/p2 probably occurs 
because the KdV model underestimates the amplitudes of the higher harmonics, 
whose number and magnitude increase as e/p2 increases. 

Profiles of one wavelength of a periodic permanent wave for each of three 
values of c/,u2, namely 4, 1 and 4, are sketched in figure 3. The nearly sinusoidal 
shape of the first corresponds close to a Stokes wave. As e/p2 increases, the wave 
contains more harmonics, and its shape is such that each crest becomes more 
isolated from neighbouring crests. The increase in e/p2 ( = a12/h3) corresponds 
usually to increasing the wavelength while the amplitude and depth are held 
constant, when the appearance of the wave train tends towards that of period- 
ically spaced solitary waves. 

4. Small periodic perturbations of permanent waves 
The unperturbed permanent wave has the surface displacement 

m 

q(x,  t )  = x ak cos k (z  - ct ) ,  (4.1) 
k = l  

where ak (k = 1,2 ,  . . .) and c are the Fourier amplitudes and phase velocity. When 
the permanent wave is perturbed by a small periodic disturbance of wave- 
number K (0  < K < i), the perturbed surface displacement is written as 

~ ( x ,  t )  = +A(K, t )  exp i ~ ( z  - ct)  +- x { A ( k -  K ,  t )  exp [ i ( k -  K )  (2- ct) ]  
h 1 "  

k = l  

+ uk exp ik(z - c t )  + A^(k + K ,  t )  exp [ i (k  + K )  (x - c t ) ] )  + complex conjugate. 
(4.2) 

The Fourier series does not include harmonics such as those with wavenumbers 
k -t 2~ generated by nonlinear interactions between two or more perturbation har- 
monics. In  this sense, it is a linear expansion in the perturbation harmonics. Sub- 
stitution of the perturbed harmonics in ( 2 . 5 ) ,  followed by linearization in Â , yields 

A 
m 

- ic x {B(~c  - K ,  I )  azA^(k + I - K )  + ~ ( k  - K ,  I -  I + K )  a k + z - l ~ * ( ~ -  I + K ) >  
z = l  

+O(e2) ,  k = 1,2,  ..., (4.3a) 
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+O(@), k = O , I , 2  ,.... (4.3b) 

It is assumed, for the purpose of ordering the terms, that, for large k, { IÂ (k -+ .)I} 
approximates to a geometric sequence with the same ratio as {ak) [equation (3.3)]. 
Equations (4.3) may then be solved by successive approximation. 

The set of equations for Â  corresponding to equations (3.6) for a k  is 

DA(K) -  KC - w(K)}A^(K)  = - ~ E R ( K ,  1 )  a,A^(l + K )  - ~ E R  ( K ,  1 - K )  a, A * ( I  - K ) ,  

DA^(I - K )  - i { ( ~  - K )  c - w ( l -  K ) } A ^ ( I -  K )  = - i e ~ ( 1  - K ,  K )  ~ , A ^ * ( K )  
(4.44 

-i&(1 - K ,  l)alA^(2 - K ) -  id?( 1 - K ,  1 f K )  azA^*(1 + K ) ,  (4.4b) 

o A ^ ( l + K ) - - i ( ( l f K ) C - W ( l + K ) } A ^ ( l + K )  = - i € X ( l + K ,  1 ) U , A ^ ( K )  

-i€R(1 + K ,  1 ) U 1 A ^ ( 2 + K ) - i & ( 1  f K ,  1 - K ) U 2 A ^ * ( 1  - K ) ,  (4.4C) 
h 

DA (2 - K )  - i{( 2 - K )  C - W (  2 - K)>  A( 2 - K )  = - is#(:! - K,  1 )  a,A^( 1 - K ) ,  (4.4d) 

DA^(2 + K )  - i { ( 2  f K )  C - O(2 f K ) } A ( 2  f K )  = - i€8(2  + K,  1) a,A^( 1 f K ) .  (4.4e) 

This set of equations, augmented and approximated to O ( E ~ ) ,  was used by Ben- 
jamin ( 1 9 6 7 ,  pp. 6 6 - 6 8 )  in his analysis of the stability of Stokes waves. Denoting 
by * the complex conjugate of an equation, as well as a variable, equations (4.4a, 
c, e ,  b*, d*)  form a set of five first-order linear differential equations with constant 
coefficients for the five variables A^(K), Â *( 1 - K ) ,  Â ( 1 + K ) ,  Â *( 2 - K )  and A^( 2 + K ) .  

The normal-mode solutions of the set of five equations are those solutions in 
which each of the five variables has the same time dependence exp (ihet). Sub- 
stitution of this time dependence into (4.4~4 c, e, b*, d*) allows the calculation of 
each h as one of the five eigenvalues of the matrix of coefficients of these five 
equations. The set of equations is stable if all five values of h are real, and unstable 
if any pair of values of h are complex conjugates. The general solution of the 
set of equations may be calculated from the eigenvectors of the matrix. 

For values of K small compared with 1 ,  the set of equations was found to be stable 
only for a finite range of values of s/p2, the range being bounded below near the 
point predicted by Benjamin ( 1 9 6 7 )  and bounded above near s/p2 = 0.3. In- 
stability for the small values of e/p2 was expected, because the set of equations 
(4.4) differs by only a few terms O(e2) from the set of equations used by Benjamin. 
Instability for e/p2 > 0.3 was suspect, since the set of five equations is not a satis- 
factory approximation near this value of s/p2. When the set of equations extracted 
from (4.3) was enlarged by the inclusion of further harmonics, this upper bound 
for stability of the set was found to increase: the greater the number of harmonics 
included in the set of equations, the greater was their range of stability. Further 
investigation confirmed that the instability for s/p2 > 0.3 resulted from the near- 
resonance of the full set of equations (4.3) being approximated by instability 
in the truncated set of equations (4.4). 
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FIGURE 4. Stability diagram for periodic permanent waves ( E  = 0.05). The curves are con- 
tours of the frequency of the lowest normal mode excited by a small periodic perturbation 
of wavenumber K.  

The set of equations for the first 2n + 1 perturbation harmonics A^(K), Â *( 1 - K ) ,  

Â ( 1 + K ) ,  . . . , A*(n - K ) ,  A^(n + K )  consists of 2n + 1 linear first-order differential 
equations with constant coefficients obtained by truncation of (4.3a*, a). The 
angular frequencies of the normal modes are the eigenvalues of the stability 
matrix formed from the coefficients of the 2n + 1 equations. The eigenvalues o 
the (2n + 1) x (2n + 1) matrix were found numerically by reducing the matrix to 
upper Hessenberg form and then using the QR algorithm (Wilkinson & Reinsch 
1971, p. 359). For given e and p, the value of n was increased until the difference 
between the common eigenvalues of successive matrices was less than a small error 
(usually The general solution for this 6 and p was constructed from the 
eigenvectors of the final matrix, the eigenvectors being found numerically by a 
methodof backsubstitutionoftheeigenvalues (Wilkinson & Reinsch 1971, p. 372). 

The general solution for the perturbation harmonics is 

2 n t l  

,=1 

2n+l 

j=l 

A ^ * ( ~ - K )  = c~,U~~,,exp(iA,et), k = 1 ,2 ,  ..., n, (4.5a) 

A ^ ( k + K ) =  a , ~ ~ ~ + ~ , ~ e x p ( i ~ , e t ) ,  k = 0 , i , 2  ,..., n, (4.5b) 

where the Aj,  j = I, . . . ,2n + 1, are the 2n + I eigenvalues of the stability matrix in 
order of increasing magnitude, U is the (2n+ 1) x (2n + 1 ) matrix whose columns 
are the 2n + 1 eigenvectors of the stability matrix, and the a,, j = 1,2,  . . . ,2n + 1, 
are arbitraiy constants determined by the initial conditions. Contours of A, corre- 
sponding to values of - 0.1 and - 0.01 are sketched in figure 4 for 0-1 < eIp2 < 2.0 
and 0 c K < 1. It is noted that A,( 1 - K )  = A,@) for 0 < K < 4, since the difference 
in the order of the lowest perturbation harmonics in the two calculations causes 
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no significant differences in the eigenvalues. Values of A,(&) are calculated 
from equations (4.7) below. The magnitude of A, is a measure of the margin of 
stability of the permanent wave for a given set of vaues of s, p and K .  

Examination of figure 4 shows that the margin of stability of a permanent 
wave decreases as K decreases from 4, that is, as the wavelength of a small periodic 
perturbation increases from twice the fundamental wavelength. The margin of 
stability of a permanent wave also decreases as e/p2 increases. Both tendencies are 
expected, since the nonlinear interactions generating the perturbation har- 
monics become closer to resonance in both cases. With the present value of E ,  

the instability predicted by Benjamin (1967) occurs for e/p2 < 0.027, below the 
range covered by figure 4. It is intended to extend the present investigation by 
including terms O(e2) in order to continue figure 4 into the range in which insta- 
bility occurs. 

The Fourier series (4.2) and equations (4.3) contain redundant terms when 
K = Q. The Fourier series in this case is rewritten in the form 

1 "  
~ ( x ,  t )  = c (A(k - Q, t )  exp i ( k  - 4) (x - ct)  + uk exp i k ( x  - ct)> 

k = l  

+complex conjugate (4.6) 
and the equations for Â  become 

h k-1 

1=1 
DA^(k- *) - i { ( k  - fr) c - o(k - & ) } A  (k - fr) = - is c S(k - Q, I) - I- Q) 

h 
00 

-is c (R(k -  4,Z) u,A(k+ I -  Q) + R ( k -  Q, I -  Q) uk+l-lA^*(z- S)} 
1=1 

+W), k = i , 2 ,  ... . (4.7) 

It is assumed for the purpose of ordering the terms that, for large k, {lÂ (k - +)I) 
approximates to a geometric sequence with the same ratio as (ak}. Equations (4.7) 
may then be solved by successive approximation. 

The set of equations for the first n perturbation harmonics consists of 2% 
linear first-order differential equations with constant coefficients for the 2% 
variables Â (+), Â *(+), ..., A^(n-+), A^*(n-Q). The n angular frequencies of the 
normal modes occur in pairs as equal and opposite real eigenvalues of the matrix 
of coefficients of the 2n equations formed by truncation from (4.7) and (4.7"). 
Although this investigation was continued to 40 perturbation harmonics with 
80 equations, no evidence was found of linear instability of a permanent wave for 
K = Q, that is, for perturbations of twice the fundamental wavelength. 

5. Small periodic perturbations of the same wavelength 
The stability of a periodic permanent wave to small perturbations of the same 

wavelength is now examined. This is the case which has been analysed by Ben- 
jamin (1973, § 4.5), who showed that cnoidal waves are stable in shape to small but 
finite disturbances of the same wavelength. In  terms of the stability diagram, 
figure 4, this case corresponds to K = 1, or equivalently, to K = 0. It is important 
because the solution clarifies the interpretation of the limit as K 3 0, that is, as 
the wavelength of the perturbing wave becomes large compared with the wave- 
length of the permanent wave. 
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If the perturbation is chosen to be of the correct shape with the same phase 
and wavelength as the permanent wave, it can convert the permanent wave to 
another of slightly different shape and phase velocity. When the perturbed 
surface displacement is written as 

(5 .1 )  
l r n  

q(x, t )  = 2 c ( a k  +A^(L) )  exp ik(x - c t )  + complex conjugate, 
k = l  

then for this particular perturbation, 

(ak + A^(k)) exp i k (x  - ct) = (ak + Sa,) exp i k [x  - (c + Sc) t ] ,  k = I, 2, . . . , 
that  is A^(k) = (ak + aa,) exp ( - iksct)  - a k  ( 5 . 2 a )  

= &a, - ika,Sct + O(S2). (5 .2b )  

Such behaviour is usually known as neutral stability, since the growth of A(k) 
in time is due only to the change in phase velocity of the wave, the shape of the 
wave being stable in the usual sense. 

Substitution of the perturbed harmonics into (2 .5 ) ,  followed by linearization in 
2, yields 

k -  1 

2=1 
DA(IC) - i(kc - w ( k ) )  A ( k )  = - ie c ~ ( k ,  I )  a,A(k - Z) 

co 
-ie R(k,1)(a,A(k+Z)+ak+lff*(Z))+0(~2j, k = 1,2,  ... . ( 5 . 3 )  

It is assumed, for the purpose of ordering the terms, that, for large k, {IA(k)l) 
approximates to the same geometric sequence as {ak} [equation (3 .3 ) ] .  The equa- 
tions are then solved by successive approximation 

1=1 

The set of equations for Â  corresponding to equations (3 .6 )  for a k  is 

D A ( I ) - ~ ( C - - ~ ) I ) ) A ( I )  = - i e ~ ( ~ ,  1)  (alA^(2)+a2A*(i)), ( 5 . 4 ~ )  

( 5 . 4 b )  

(The equation for A ( 3 )  decouples from the set.) Equations ( 5 . 4 a ,  b, a*, b*) form a 
set of four linear first-order differential equations with constant coefficients for 
the four variables A(l),  A*(l), f f ( 2 )  and 2 * ( 2 ) .  Elimination, followed by sub- 
stitution for a1 and a2 from (3 .7 ) ,  leaves each of the four variables satisfying 

~ A ^ ( 2 ) - i ( 2 c - w ( 2 ) ) A ( 2 )  = - 2 i e ~ ( 2 ,  l)alA(l) .  

02(02+€2h;)A^ = 0, (5 .5 )  

where 0 (twice) and + A 2  are the eigenvalues of the matrix of coefficients of 
the four equations. The solution for Â ( 1)  is therefore 

A(1) = pll+igl1t+pl2exp (ieh2t) +qI2exp (-ieh,t), 

where pll, qll, p I 2  and ql2 are determined by the initial conditions. If the initial 
conditions are chosen to be A(1) = 4 (complex) and J ( 2 )  = 0, then p,, and qll 
are both real and are consistent with ( 5 . 2 b ) .  

The set of equations for the first n perturbation harmonics consists of 2 n  
linear first-order differential equations with constant coefficients for the 2n 
variables x(l), A^*(1), ..., A^(n), A^*(n) and is found by truncation from ( 5 . 3 )  and 
(5 .3*) .  Their solution consists of a superposition of a neutrally stable contribution 
together with 2(n - 1) normal modes having the time dependence exp ( & injet)  
with hi real, j = 2 , 3 ,  . . . , n .  The angular frequencies of the normal modes are the 
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eigenvalues of the matrix of coefficients of the 2n equations, and include a doubles 
zero eigenvalue. The double zero eigenvalue was approximated in some instances 
by equal and opposite real numbers of small magnitude, and in other instances 
by complex-conjugate numbers of small magnitude, but apart from this curiosity 
of the approximations, all eigenvalues were found to be real. Although this 
investigation was continued to 40 perturbation harmonics with 80 equations, no 
evidence was found of linear instability of a permanent wave for K = 1, that is, 
for perturbations of the same wavelength. 

6. Examples 
The three examples considered are the three profiles sketched in figure 3, 

namely the periodic permanent waves for which ./p2 = 2, 1 and 4. A range of 
values of K was taken for each example, corresponding to different points on the 
stability diagram, figure 4. The solutions obtained by the linear stability analysi 
of $34 and 5 were compared with direct numerical solutions of (2.5) without 
linearization in the perturbation amplitudes (Bryant 1973, $ 6). The results of 
these calculations are now summarized. 

The case s/p2 = 4 
The most stable perturbation is that with K = 0.5, of twice the wavelength of the 
permanent wave. The perturbation in this case consists of a lowest mode whose 
period is 2n/0-1786 and a much smaller second mode whose period is 27r/1-208~. 
When K = 0.1, the period of the lowest mode is 27r/O-O50s, and when K = 0.01, 
it is 2n/0.003~. The amplification of the perturbation harmonics at side-band 
wavenumbers 1 i. K increases from about 2 at K = 0.5 to about 5 at K = 0.1, 
and to about 75 at K = 0.01. Although the linear solution in the latter case is 
strictly stable, the amplification is so large that for any reasonable initial per- 
turbation the linear approximations fail. However, terms O(s2) are neglected in 
the analysis leading to this solution, so for consistency the exponentials of lowest 
degree should be replaced by their linear expansions. When this is done, the linear 
solution is recognized as describing nearly neutral stability. Each crest of the 
perturbed wave train moves with a nearly constant phase velocity which differs 
infinitesimally from the phase velocity of the crests on either side and from the 
phase velocity of the unperturbed wave train. 

The case e/p2 = 1 

The perturbation when K = 0.5 consists of a lowest mode whose period is 
2404085e and a much smaller second mode whose periodis 27r/0*69e. The amplifi- 
cation of the subharmonic of wavenumber 0.5 is about 25. The linear solution, 
with the exponentials of lowest degree replaced by their linear expansions, is in 
excellent agreement with the direct solution of (2.5) for i3 = 0.01, where i3 is the 
initial value of J(0.5).  Alternate crests of the perturbed wave train move with 
an infinitesimally larger velocity and intervening crests with an infinitesimally 
smaller velocity than the phase velocity of the undisturbed wave train, and a 
secondary wave of period 2nl0.69~ is superposed. 
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FIUURE 5. A periodic permanent wave disturbed by a small but finite perturbation of 
twice the wavelength (€/pa = 1.0, K = 0.5, B = 0.1). The lines are graphs of ~(z, t )  at  values of 
et apart, 0 < et < 2 0 ~ .  Successive graphs are displaced vertically by a constant amount, 
with any part of a graph that lies below a previous graph being drawn on top of the previous 
graph. 

This behaviour is magnified when i2 = 0.1 to the extent that the crests meet 
one another within the interval of direct integration of (2.5). The solution for 
r ( x , t )  relative to a frame of reference moving with unit velocity is shown in 
figure 5. The figure can be viewed as a perspective drawing of q(x, t )  relative to 
the moving frame of reference, with x increasing over 4 wavelengths to the right 
and et increasing by 207r away from the viewer. Apart from the form of the inter- 
actions, the appearance of the surface is similar to that of the examples illustrated 
previously (Bryant 1973). The two dominant wave trains meet more obliquely 
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FIGURE 6. The amplitude of the subharmonic in the perturbed wave motion of figure 5. 

than previously, with the result that consecutive crests do not cross over one 
another, but instead change roles a t  their point of closest approach. This property 
of waves changing roles was noticed by Zabusky (1967, p. 239) in the interaction 
of solitary waves, and by Madsen, Mei & Savage (1970) in the interaction of 
cnoidal waves. Alternate crests form separate primary and secondary wave trains, 
with phase discontinuities occurring between wave trains a t  their points of 
closest approach, although the paths of the crests remain continuous. A secondary 
wave of period about 2n/0.7e is superposed. 

This example is significant because it shows that the original permanent wave 
is stable in a nonlinear sense to small but finite perturbations. The original 
permanent wave is converted into two intersecting wave trains by small perturba- 
tions of twice the wavelength of the permanent wave. The subharmonic A(0.5) is 
nearly periodic, the time scale being the time taken for repetitions of the pattern 
of intersections. The variation with time of the amplitude of the subharmonic 
is sketched in figure 6 for the same time interval 0 < et < 20n as in figure 5 .  The 
amplitude of the subharmonic is a maximum a t  the closest approach of the wave 
crests and is a minimum when the wave trains return to a shape near to their 
unperturbed shape. 

When the periodic perturbation is of the same wavelength as the permanent 
wave, K = 1 or 0, and the linear solution for A( 1) with initial conditions A( 1) = a  ̂
(real) and A(k) = 0 otherwise describes neutral stability in which the phase 
velocity of the perturbed wave train is 1 +0.211e+0.60&e [equation ( 5 . 2 b ) ] ,  
provided that â  is sufficiently small. The direct solution for A(1) from (2.5) with 
â  = 0.01 is sketched in figure 7 for 0 6 et 6 57~, and is in excellent agreement with 
the linear solution. When the initial perturbation is increased to a  ̂ = 0.1, a direct 
solution of (2.5) shows that the original permanent wave is still neutrally stable, 
but now in a nonlinear sense, since the mean phase velocity is increased by a small 
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FIGURE 7. The perturbation of the first harmonic in a neutrally stable motion 
(€/pz = 1, K = 1, 6 = 0.01). 

but finite amount. The perturbation A(1) now takes the form of (5.2a), before 
the linearization to (5.2b). This result is in agreement with the analysis of Ben- 
jamin (1973, 94.5). 

The case E/p2 = 4 

The periodic perturbations for which K = 0.5, 0.1 and 0-01 are all so close to 
neutral stability that it was not possible to separate numerically the lowest two 
eigenvalues from a double zero eigenvalue. For this reason, difficulties can be 
expected in generating or maintaining such a permanent wave. This was found to 
be the case in direct numerical solutions of (2.5), when the wave train tended to 
degenerate into a large primary and a much smaller secondary wave train within 
a few periods of starting the integration. 

7. Discussion 
The linearized perturbation analysis, together with the numerical integration 

of a large number of examples provide a comprehensive description of the stability 
of periodic permanent waves in shallow water to periodic disturbances travelling 
in the same direction. For permanent waves which are only weakly nonlinear 
(E/,,u2 < 4) perturbed by disturbances whose wavelength is only a small multiple 
of the fundamental wavelength (0-1 < K < 0-9), the resulting wave motion is 
stable in the usual linear sense. For permanent waves which are more strongly 
nonlinear, or for disturbances whose wavelength is a larger multiple of the funda- 
mental wavelength, the resulting wave motion is only marginally stable in the 
usual linear sense, the margin of stability being so small that for practical pur- 
poses it is zero. In  such cases, the resulting wave motion is stable in a nonlinear 
sense, in that the disturbance is nearly periodic in time. This property has not 
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been verified analytically, but was found to be true in all numerical examples 
evaluated. It was not appreciated in the first examples solved, when the large 
amplification of initial disturbances over the interval of integration led to the con- 
clusion that the wave might be unstable. An extension of the interval of integra- 
tion showed that even in these examples the disturbance is nearly periodic. 

The analysis has been applied to the development in time of a wave train which 
is spatially periodic. Experimental investigations are usually concerned with the 
development in space of a wave train which is temporally periodic. Some de- 
ductions can be made about the experimental situation, since the two models are 
equivalent to within the approximations made in each case. Consider the experi- 
mental situation in which a periodic permanent wave is generated by a wave 
maker at  one end of a uniform open channel. If the wave is only weakly nonlinear, 
it is linearly stable to slow modulation of the wave maker over moderate dis- 
tances from the wave maker. For greater distances, the marginal stability of the 
wave train to even slower modulation of the wave maker makes itself apparent 
by an increasing erosion of the spatial periodicity of the wave train. If the wave 
is more strongly nonlinear, the marginal stability of the wave train to any slow 
modulation of the wave maker becomes apparent nearer to the wave maker. 
This in turn leads to consecutive crests overtaking one another and changing 
roles a t  their points of closest approach, within moderate distances of the wave 
maker. For large values of e/,u2, the margin of stability of the wave train is so 
small that experimental difficulties can be expected in generating a spatially 
periodic permanent wave. 
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